Рассчитать высоту треугольника со сторонами 149, 139 и 131
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 139 + 131}{2}} \normalsize = 209.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{209.5(209.5-149)(209.5-139)(209.5-131)}}{139}\normalsize = 120.507557}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{209.5(209.5-149)(209.5-139)(209.5-131)}}{149}\normalsize = 112.419802}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{209.5(209.5-149)(209.5-139)(209.5-131)}}{131}\normalsize = 127.866797}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 139 и 131 равна 120.507557
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 139 и 131 равна 112.419802
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 139 и 131 равна 127.866797
Ссылка на результат
?n1=149&n2=139&n3=131
Найти высоту треугольника со сторонами 94, 74 и 50
Найти высоту треугольника со сторонами 81, 75 и 10
Найти высоту треугольника со сторонами 135, 131 и 62
Найти высоту треугольника со сторонами 108, 78 и 70
Найти высоту треугольника со сторонами 94, 87 и 56
Найти высоту треугольника со сторонами 95, 49 и 47
Найти высоту треугольника со сторонами 81, 75 и 10
Найти высоту треугольника со сторонами 135, 131 и 62
Найти высоту треугольника со сторонами 108, 78 и 70
Найти высоту треугольника со сторонами 94, 87 и 56
Найти высоту треугольника со сторонами 95, 49 и 47