Рассчитать высоту треугольника со сторонами 149, 141 и 107
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 141 + 107}{2}} \normalsize = 198.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{198.5(198.5-149)(198.5-141)(198.5-107)}}{141}\normalsize = 101.985448}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{198.5(198.5-149)(198.5-141)(198.5-107)}}{149}\normalsize = 96.5097191}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{198.5(198.5-149)(198.5-141)(198.5-107)}}{107}\normalsize = 134.392039}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 141 и 107 равна 101.985448
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 141 и 107 равна 96.5097191
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 141 и 107 равна 134.392039
Ссылка на результат
?n1=149&n2=141&n3=107
Найти высоту треугольника со сторонами 143, 140 и 70
Найти высоту треугольника со сторонами 142, 131 и 119
Найти высоту треугольника со сторонами 148, 143 и 123
Найти высоту треугольника со сторонами 141, 84 и 79
Найти высоту треугольника со сторонами 118, 92 и 42
Найти высоту треугольника со сторонами 105, 80 и 33
Найти высоту треугольника со сторонами 142, 131 и 119
Найти высоту треугольника со сторонами 148, 143 и 123
Найти высоту треугольника со сторонами 141, 84 и 79
Найти высоту треугольника со сторонами 118, 92 и 42
Найти высоту треугольника со сторонами 105, 80 и 33