Рассчитать высоту треугольника со сторонами 149, 141 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 141 + 56}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-149)(173-141)(173-56)}}{141}\normalsize = 55.9251909}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-149)(173-141)(173-56)}}{149}\normalsize = 52.9224961}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-149)(173-141)(173-56)}}{56}\normalsize = 140.811641}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 141 и 56 равна 55.9251909
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 141 и 56 равна 52.9224961
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 141 и 56 равна 140.811641
Ссылка на результат
?n1=149&n2=141&n3=56
Найти высоту треугольника со сторонами 120, 118 и 92
Найти высоту треугольника со сторонами 96, 72 и 55
Найти высоту треугольника со сторонами 86, 69 и 51
Найти высоту треугольника со сторонами 125, 105 и 53
Найти высоту треугольника со сторонами 141, 126 и 25
Найти высоту треугольника со сторонами 41, 39 и 21
Найти высоту треугольника со сторонами 96, 72 и 55
Найти высоту треугольника со сторонами 86, 69 и 51
Найти высоту треугольника со сторонами 125, 105 и 53
Найти высоту треугольника со сторонами 141, 126 и 25
Найти высоту треугольника со сторонами 41, 39 и 21