Рассчитать высоту треугольника со сторонами 149, 144 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 144 + 41}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-149)(167-144)(167-41)}}{144}\normalsize = 40.9931397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-149)(167-144)(167-41)}}{149}\normalsize = 39.617531}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-149)(167-144)(167-41)}}{41}\normalsize = 143.975905}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 144 и 41 равна 40.9931397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 144 и 41 равна 39.617531
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 144 и 41 равна 143.975905
Ссылка на результат
?n1=149&n2=144&n3=41
Найти высоту треугольника со сторонами 86, 67 и 37
Найти высоту треугольника со сторонами 124, 123 и 41
Найти высоту треугольника со сторонами 14, 11 и 5
Найти высоту треугольника со сторонами 138, 127 и 107
Найти высоту треугольника со сторонами 104, 66 и 58
Найти высоту треугольника со сторонами 141, 138 и 53
Найти высоту треугольника со сторонами 124, 123 и 41
Найти высоту треугольника со сторонами 14, 11 и 5
Найти высоту треугольника со сторонами 138, 127 и 107
Найти высоту треугольника со сторонами 104, 66 и 58
Найти высоту треугольника со сторонами 141, 138 и 53