Рассчитать высоту треугольника со сторонами 149, 145 и 101
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 145 + 101}{2}} \normalsize = 197.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{197.5(197.5-149)(197.5-145)(197.5-101)}}{145}\normalsize = 96.085913}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{197.5(197.5-149)(197.5-145)(197.5-101)}}{149}\normalsize = 93.5064254}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{197.5(197.5-149)(197.5-145)(197.5-101)}}{101}\normalsize = 137.945123}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 145 и 101 равна 96.085913
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 145 и 101 равна 93.5064254
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 145 и 101 равна 137.945123
Ссылка на результат
?n1=149&n2=145&n3=101
Найти высоту треугольника со сторонами 111, 86 и 55
Найти высоту треугольника со сторонами 89, 67 и 46
Найти высоту треугольника со сторонами 133, 87 и 50
Найти высоту треугольника со сторонами 96, 84 и 79
Найти высоту треугольника со сторонами 107, 97 и 89
Найти высоту треугольника со сторонами 125, 109 и 26
Найти высоту треугольника со сторонами 89, 67 и 46
Найти высоту треугольника со сторонами 133, 87 и 50
Найти высоту треугольника со сторонами 96, 84 и 79
Найти высоту треугольника со сторонами 107, 97 и 89
Найти высоту треугольника со сторонами 125, 109 и 26