Рассчитать высоту треугольника со сторонами 149, 145 и 106
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 145 + 106}{2}} \normalsize = 200}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{200(200-149)(200-145)(200-106)}}{145}\normalsize = 100.163006}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{200(200-149)(200-145)(200-106)}}{149}\normalsize = 97.4740665}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{200(200-149)(200-145)(200-106)}}{106}\normalsize = 137.015433}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 145 и 106 равна 100.163006
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 145 и 106 равна 97.4740665
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 145 и 106 равна 137.015433
Ссылка на результат
?n1=149&n2=145&n3=106
Найти высоту треугольника со сторонами 32, 20 и 20
Найти высоту треугольника со сторонами 118, 117 и 65
Найти высоту треугольника со сторонами 101, 99 и 22
Найти высоту треугольника со сторонами 121, 119 и 28
Найти высоту треугольника со сторонами 142, 119 и 110
Найти высоту треугольника со сторонами 147, 141 и 121
Найти высоту треугольника со сторонами 118, 117 и 65
Найти высоту треугольника со сторонами 101, 99 и 22
Найти высоту треугольника со сторонами 121, 119 и 28
Найти высоту треугольника со сторонами 142, 119 и 110
Найти высоту треугольника со сторонами 147, 141 и 121