Рассчитать высоту треугольника со сторонами 149, 146 и 141
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 146 + 141}{2}} \normalsize = 218}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{218(218-149)(218-146)(218-141)}}{146}\normalsize = 125.095458}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{218(218-149)(218-146)(218-141)}}{149}\normalsize = 122.576758}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{218(218-149)(218-146)(218-141)}}{141}\normalsize = 129.531468}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 146 и 141 равна 125.095458
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 146 и 141 равна 122.576758
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 146 и 141 равна 129.531468
Ссылка на результат
?n1=149&n2=146&n3=141
Найти высоту треугольника со сторонами 146, 112 и 89
Найти высоту треугольника со сторонами 147, 104 и 76
Найти высоту треугольника со сторонами 88, 79 и 65
Найти высоту треугольника со сторонами 105, 70 и 50
Найти высоту треугольника со сторонами 101, 99 и 32
Найти высоту треугольника со сторонами 122, 122 и 22
Найти высоту треугольника со сторонами 147, 104 и 76
Найти высоту треугольника со сторонами 88, 79 и 65
Найти высоту треугольника со сторонами 105, 70 и 50
Найти высоту треугольника со сторонами 101, 99 и 32
Найти высоту треугольника со сторонами 122, 122 и 22