Рассчитать высоту треугольника со сторонами 149, 147 и 31

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 147 + 31}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-149)(163.5-147)(163.5-31)}}{147}\normalsize = 30.9745818}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-149)(163.5-147)(163.5-31)}}{149}\normalsize = 30.5588156}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-149)(163.5-147)(163.5-31)}}{31}\normalsize = 146.879469}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 147 и 31 равна 30.9745818
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 147 и 31 равна 30.5588156
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 147 и 31 равна 146.879469
Ссылка на результат
?n1=149&n2=147&n3=31