Рассчитать высоту треугольника со сторонами 149, 93 и 92
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 93 + 92}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-149)(167-93)(167-92)}}{93}\normalsize = 87.8391302}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-149)(167-93)(167-92)}}{149}\normalsize = 54.8257658}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-149)(167-93)(167-92)}}{92}\normalsize = 88.7939034}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 93 и 92 равна 87.8391302
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 93 и 92 равна 54.8257658
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 93 и 92 равна 88.7939034
Ссылка на результат
?n1=149&n2=93&n3=92
Найти высоту треугольника со сторонами 148, 146 и 92
Найти высоту треугольника со сторонами 101, 67 и 43
Найти высоту треугольника со сторонами 138, 116 и 51
Найти высоту треугольника со сторонами 32, 32 и 24
Найти высоту треугольника со сторонами 83, 75 и 58
Найти высоту треугольника со сторонами 124, 100 и 53
Найти высоту треугольника со сторонами 101, 67 и 43
Найти высоту треугольника со сторонами 138, 116 и 51
Найти высоту треугольника со сторонами 32, 32 и 24
Найти высоту треугольника со сторонами 83, 75 и 58
Найти высоту треугольника со сторонами 124, 100 и 53