Рассчитать высоту треугольника со сторонами 149, 94 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 94 + 85}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-149)(164-94)(164-85)}}{94}\normalsize = 78.4751693}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-149)(164-94)(164-85)}}{149}\normalsize = 49.5078249}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-149)(164-94)(164-85)}}{85}\normalsize = 86.7843049}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 94 и 85 равна 78.4751693
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 94 и 85 равна 49.5078249
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 94 и 85 равна 86.7843049
Ссылка на результат
?n1=149&n2=94&n3=85
Найти высоту треугольника со сторонами 130, 113 и 111
Найти высоту треугольника со сторонами 105, 68 и 50
Найти высоту треугольника со сторонами 104, 101 и 25
Найти высоту треугольника со сторонами 78, 61 и 55
Найти высоту треугольника со сторонами 101, 83 и 24
Найти высоту треугольника со сторонами 130, 80 и 63
Найти высоту треугольника со сторонами 105, 68 и 50
Найти высоту треугольника со сторонами 104, 101 и 25
Найти высоту треугольника со сторонами 78, 61 и 55
Найти высоту треугольника со сторонами 101, 83 и 24
Найти высоту треугольника со сторонами 130, 80 и 63