Рассчитать высоту треугольника со сторонами 149, 99 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 99 + 57}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-149)(152.5-99)(152.5-57)}}{99}\normalsize = 33.3612506}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-149)(152.5-99)(152.5-57)}}{149}\normalsize = 22.1662}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-149)(152.5-99)(152.5-57)}}{57}\normalsize = 57.9432246}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 99 и 57 равна 33.3612506
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 99 и 57 равна 22.1662
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 99 и 57 равна 57.9432246
Ссылка на результат
?n1=149&n2=99&n3=57
Найти высоту треугольника со сторонами 85, 79 и 67
Найти высоту треугольника со сторонами 136, 88 и 62
Найти высоту треугольника со сторонами 140, 114 и 107
Найти высоту треугольника со сторонами 128, 94 и 40
Найти высоту треугольника со сторонами 83, 56 и 53
Найти высоту треугольника со сторонами 148, 128 и 83
Найти высоту треугольника со сторонами 136, 88 и 62
Найти высоту треугольника со сторонами 140, 114 и 107
Найти высоту треугольника со сторонами 128, 94 и 40
Найти высоту треугольника со сторонами 83, 56 и 53
Найти высоту треугольника со сторонами 148, 128 и 83