Рассчитать высоту треугольника со сторонами 15, 12 и 5
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{15 + 12 + 5}{2}} \normalsize = 16}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{16(16-15)(16-12)(16-5)}}{12}\normalsize = 4.42216639}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{16(16-15)(16-12)(16-5)}}{15}\normalsize = 3.53773311}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{16(16-15)(16-12)(16-5)}}{5}\normalsize = 10.6131993}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 15, 12 и 5 равна 4.42216639
Высота треугольника опущенная с вершины A на сторону BC со сторонами 15, 12 и 5 равна 3.53773311
Высота треугольника опущенная с вершины C на сторону AB со сторонами 15, 12 и 5 равна 10.6131993
Ссылка на результат
?n1=15&n2=12&n3=5
Найти высоту треугольника со сторонами 28, 27 и 11
Найти высоту треугольника со сторонами 121, 104 и 48
Найти высоту треугольника со сторонами 113, 109 и 57
Найти высоту треугольника со сторонами 122, 119 и 32
Найти высоту треугольника со сторонами 86, 80 и 20
Найти высоту треугольника со сторонами 136, 108 и 30
Найти высоту треугольника со сторонами 121, 104 и 48
Найти высоту треугольника со сторонами 113, 109 и 57
Найти высоту треугольника со сторонами 122, 119 и 32
Найти высоту треугольника со сторонами 86, 80 и 20
Найти высоту треугольника со сторонами 136, 108 и 30