Рассчитать высоту треугольника со сторонами 15, 13 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{15 + 13 + 7}{2}} \normalsize = 17.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{17.5(17.5-15)(17.5-13)(17.5-7)}}{13}\normalsize = 6.99482057}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{17.5(17.5-15)(17.5-13)(17.5-7)}}{15}\normalsize = 6.06217783}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{17.5(17.5-15)(17.5-13)(17.5-7)}}{7}\normalsize = 12.9903811}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 15, 13 и 7 равна 6.99482057
Высота треугольника опущенная с вершины A на сторону BC со сторонами 15, 13 и 7 равна 6.06217783
Высота треугольника опущенная с вершины C на сторону AB со сторонами 15, 13 и 7 равна 12.9903811
Ссылка на результат
?n1=15&n2=13&n3=7
Найти высоту треугольника со сторонами 127, 126 и 18
Найти высоту треугольника со сторонами 119, 110 и 44
Найти высоту треугольника со сторонами 141, 89 и 61
Найти высоту треугольника со сторонами 144, 142 и 120
Найти высоту треугольника со сторонами 147, 109 и 51
Найти высоту треугольника со сторонами 108, 92 и 37
Найти высоту треугольника со сторонами 119, 110 и 44
Найти высоту треугольника со сторонами 141, 89 и 61
Найти высоту треугольника со сторонами 144, 142 и 120
Найти высоту треугольника со сторонами 147, 109 и 51
Найти высоту треугольника со сторонами 108, 92 и 37