Рассчитать высоту треугольника со сторонами 150, 101 и 99
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 101 + 99}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-150)(175-101)(175-99)}}{101}\normalsize = 98.2246085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-150)(175-101)(175-99)}}{150}\normalsize = 66.1379031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-150)(175-101)(175-99)}}{99}\normalsize = 100.208944}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 101 и 99 равна 98.2246085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 101 и 99 равна 66.1379031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 101 и 99 равна 100.208944
Ссылка на результат
?n1=150&n2=101&n3=99
Найти высоту треугольника со сторонами 105, 100 и 15
Найти высоту треугольника со сторонами 137, 103 и 93
Найти высоту треугольника со сторонами 143, 142 и 28
Найти высоту треугольника со сторонами 144, 96 и 70
Найти высоту треугольника со сторонами 98, 60 и 44
Найти высоту треугольника со сторонами 121, 89 и 42
Найти высоту треугольника со сторонами 137, 103 и 93
Найти высоту треугольника со сторонами 143, 142 и 28
Найти высоту треугольника со сторонами 144, 96 и 70
Найти высоту треугольника со сторонами 98, 60 и 44
Найти высоту треугольника со сторонами 121, 89 и 42