Рассчитать высоту треугольника со сторонами 150, 102 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 102 + 73}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-150)(162.5-102)(162.5-73)}}{102}\normalsize = 65.0280481}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-150)(162.5-102)(162.5-73)}}{150}\normalsize = 44.2190727}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-150)(162.5-102)(162.5-73)}}{73}\normalsize = 90.8611083}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 102 и 73 равна 65.0280481
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 102 и 73 равна 44.2190727
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 102 и 73 равна 90.8611083
Ссылка на результат
?n1=150&n2=102&n3=73
Найти высоту треугольника со сторонами 19, 19 и 7
Найти высоту треугольника со сторонами 133, 101 и 77
Найти высоту треугольника со сторонами 119, 109 и 58
Найти высоту треугольника со сторонами 108, 90 и 27
Найти высоту треугольника со сторонами 118, 83 и 47
Найти высоту треугольника со сторонами 63, 40 и 40
Найти высоту треугольника со сторонами 133, 101 и 77
Найти высоту треугольника со сторонами 119, 109 и 58
Найти высоту треугольника со сторонами 108, 90 и 27
Найти высоту треугольника со сторонами 118, 83 и 47
Найти высоту треугольника со сторонами 63, 40 и 40