Рассчитать высоту треугольника со сторонами 150, 103 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 103 + 60}{2}} \normalsize = 156.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156.5(156.5-150)(156.5-103)(156.5-60)}}{103}\normalsize = 44.4986841}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156.5(156.5-150)(156.5-103)(156.5-60)}}{150}\normalsize = 30.555763}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156.5(156.5-150)(156.5-103)(156.5-60)}}{60}\normalsize = 76.3894076}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 103 и 60 равна 44.4986841
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 103 и 60 равна 30.555763
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 103 и 60 равна 76.3894076
Ссылка на результат
?n1=150&n2=103&n3=60
Найти высоту треугольника со сторонами 140, 136 и 101
Найти высоту треугольника со сторонами 100, 69 и 55
Найти высоту треугольника со сторонами 53, 41 и 37
Найти высоту треугольника со сторонами 61, 50 и 17
Найти высоту треугольника со сторонами 117, 114 и 39
Найти высоту треугольника со сторонами 117, 89 и 46
Найти высоту треугольника со сторонами 100, 69 и 55
Найти высоту треугольника со сторонами 53, 41 и 37
Найти высоту треугольника со сторонами 61, 50 и 17
Найти высоту треугольника со сторонами 117, 114 и 39
Найти высоту треугольника со сторонами 117, 89 и 46