Рассчитать высоту треугольника со сторонами 150, 103 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 103 + 67}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-150)(160-103)(160-67)}}{103}\normalsize = 56.549877}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-150)(160-103)(160-67)}}{150}\normalsize = 38.8309155}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-150)(160-103)(160-67)}}{67}\normalsize = 86.9348855}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 103 и 67 равна 56.549877
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 103 и 67 равна 38.8309155
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 103 и 67 равна 86.9348855
Ссылка на результат
?n1=150&n2=103&n3=67
Найти высоту треугольника со сторонами 78, 50 и 33
Найти высоту треугольника со сторонами 131, 92 и 49
Найти высоту треугольника со сторонами 115, 82 и 63
Найти высоту треугольника со сторонами 138, 119 и 28
Найти высоту треугольника со сторонами 82, 64 и 48
Найти высоту треугольника со сторонами 148, 140 и 9
Найти высоту треугольника со сторонами 131, 92 и 49
Найти высоту треугольника со сторонами 115, 82 и 63
Найти высоту треугольника со сторонами 138, 119 и 28
Найти высоту треугольника со сторонами 82, 64 и 48
Найти высоту треугольника со сторонами 148, 140 и 9