Рассчитать высоту треугольника со сторонами 150, 103 и 87
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 103 + 87}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-150)(170-103)(170-87)}}{103}\normalsize = 84.4323111}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-150)(170-103)(170-87)}}{150}\normalsize = 57.9768536}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-150)(170-103)(170-87)}}{87}\normalsize = 99.9600924}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 103 и 87 равна 84.4323111
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 103 и 87 равна 57.9768536
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 103 и 87 равна 99.9600924
Ссылка на результат
?n1=150&n2=103&n3=87
Найти высоту треугольника со сторонами 76, 75 и 17
Найти высоту треугольника со сторонами 143, 130 и 36
Найти высоту треугольника со сторонами 128, 125 и 97
Найти высоту треугольника со сторонами 129, 122 и 26
Найти высоту треугольника со сторонами 89, 58 и 41
Найти высоту треугольника со сторонами 113, 78 и 44
Найти высоту треугольника со сторонами 143, 130 и 36
Найти высоту треугольника со сторонами 128, 125 и 97
Найти высоту треугольника со сторонами 129, 122 и 26
Найти высоту треугольника со сторонами 89, 58 и 41
Найти высоту треугольника со сторонами 113, 78 и 44