Рассчитать высоту треугольника со сторонами 150, 107 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 107 + 56}{2}} \normalsize = 156.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156.5(156.5-150)(156.5-107)(156.5-56)}}{107}\normalsize = 42.0480343}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156.5(156.5-150)(156.5-107)(156.5-56)}}{150}\normalsize = 29.9942645}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156.5(156.5-150)(156.5-107)(156.5-56)}}{56}\normalsize = 80.3417798}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 107 и 56 равна 42.0480343
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 107 и 56 равна 29.9942645
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 107 и 56 равна 80.3417798
Ссылка на результат
?n1=150&n2=107&n3=56
Найти высоту треугольника со сторонами 122, 119 и 39
Найти высоту треугольника со сторонами 104, 77 и 71
Найти высоту треугольника со сторонами 146, 119 и 38
Найти высоту треугольника со сторонами 10, 9 и 9
Найти высоту треугольника со сторонами 96, 72 и 52
Найти высоту треугольника со сторонами 148, 102 и 55
Найти высоту треугольника со сторонами 104, 77 и 71
Найти высоту треугольника со сторонами 146, 119 и 38
Найти высоту треугольника со сторонами 10, 9 и 9
Найти высоту треугольника со сторонами 96, 72 и 52
Найти высоту треугольника со сторонами 148, 102 и 55