Рассчитать высоту треугольника со сторонами 150, 109 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 109 + 68}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-150)(163.5-109)(163.5-68)}}{109}\normalsize = 62.1912373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-150)(163.5-109)(163.5-68)}}{150}\normalsize = 45.1922991}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-150)(163.5-109)(163.5-68)}}{68}\normalsize = 99.6888951}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 109 и 68 равна 62.1912373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 109 и 68 равна 45.1922991
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 109 и 68 равна 99.6888951
Ссылка на результат
?n1=150&n2=109&n3=68
Найти высоту треугольника со сторонами 20, 19 и 10
Найти высоту треугольника со сторонами 120, 114 и 102
Найти высоту треугольника со сторонами 88, 85 и 28
Найти высоту треугольника со сторонами 149, 122 и 118
Найти высоту треугольника со сторонами 67, 56 и 40
Найти высоту треугольника со сторонами 102, 63 и 50
Найти высоту треугольника со сторонами 120, 114 и 102
Найти высоту треугольника со сторонами 88, 85 и 28
Найти высоту треугольника со сторонами 149, 122 и 118
Найти высоту треугольника со сторонами 67, 56 и 40
Найти высоту треугольника со сторонами 102, 63 и 50