Рассчитать высоту треугольника со сторонами 150, 113 и 54

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 113 + 54}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-150)(158.5-113)(158.5-54)}}{113}\normalsize = 44.7960264}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-150)(158.5-113)(158.5-54)}}{150}\normalsize = 33.7463399}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-150)(158.5-113)(158.5-54)}}{54}\normalsize = 93.739833}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 113 и 54 равна 44.7960264
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 113 и 54 равна 33.7463399
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 113 и 54 равна 93.739833
Ссылка на результат
?n1=150&n2=113&n3=54