Рассчитать высоту треугольника со сторонами 150, 113 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 113 + 95}{2}} \normalsize = 179}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{179(179-150)(179-113)(179-95)}}{113}\normalsize = 94.9486245}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{179(179-150)(179-113)(179-95)}}{150}\normalsize = 71.5279638}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{179(179-150)(179-113)(179-95)}}{95}\normalsize = 112.93889}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 113 и 95 равна 94.9486245
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 113 и 95 равна 71.5279638
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 113 и 95 равна 112.93889
Ссылка на результат
?n1=150&n2=113&n3=95
Найти высоту треугольника со сторонами 140, 112 и 58
Найти высоту треугольника со сторонами 136, 119 и 86
Найти высоту треугольника со сторонами 145, 106 и 78
Найти высоту треугольника со сторонами 110, 66 и 63
Найти высоту треугольника со сторонами 124, 120 и 23
Найти высоту треугольника со сторонами 139, 123 и 41
Найти высоту треугольника со сторонами 136, 119 и 86
Найти высоту треугольника со сторонами 145, 106 и 78
Найти высоту треугольника со сторонами 110, 66 и 63
Найти высоту треугольника со сторонами 124, 120 и 23
Найти высоту треугольника со сторонами 139, 123 и 41