Рассчитать высоту треугольника со сторонами 150, 118 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 118 + 93}{2}} \normalsize = 180.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180.5(180.5-150)(180.5-118)(180.5-93)}}{118}\normalsize = 92.9994856}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180.5(180.5-150)(180.5-118)(180.5-93)}}{150}\normalsize = 73.1595953}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180.5(180.5-150)(180.5-118)(180.5-93)}}{93}\normalsize = 117.999347}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 118 и 93 равна 92.9994856
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 118 и 93 равна 73.1595953
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 118 и 93 равна 117.999347
Ссылка на результат
?n1=150&n2=118&n3=93
Найти высоту треугольника со сторонами 135, 122 и 121
Найти высоту треугольника со сторонами 53, 42 и 33
Найти высоту треугольника со сторонами 144, 110 и 85
Найти высоту треугольника со сторонами 35, 32 и 17
Найти высоту треугольника со сторонами 77, 72 и 22
Найти высоту треугольника со сторонами 96, 89 и 38
Найти высоту треугольника со сторонами 53, 42 и 33
Найти высоту треугольника со сторонами 144, 110 и 85
Найти высоту треугольника со сторонами 35, 32 и 17
Найти высоту треугольника со сторонами 77, 72 и 22
Найти высоту треугольника со сторонами 96, 89 и 38