Рассчитать высоту треугольника со сторонами 150, 121 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 121 + 62}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-150)(166.5-121)(166.5-62)}}{121}\normalsize = 59.7389466}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-150)(166.5-121)(166.5-62)}}{150}\normalsize = 48.1894169}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-150)(166.5-121)(166.5-62)}}{62}\normalsize = 116.587299}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 121 и 62 равна 59.7389466
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 121 и 62 равна 48.1894169
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 121 и 62 равна 116.587299
Ссылка на результат
?n1=150&n2=121&n3=62