Рассчитать высоту треугольника со сторонами 150, 122 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 122 + 75}{2}} \normalsize = 173.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-150)(173.5-122)(173.5-75)}}{122}\normalsize = 74.5547924}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-150)(173.5-122)(173.5-75)}}{150}\normalsize = 60.6378978}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-150)(173.5-122)(173.5-75)}}{75}\normalsize = 121.275796}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 122 и 75 равна 74.5547924
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 122 и 75 равна 60.6378978
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 122 и 75 равна 121.275796
Ссылка на результат
?n1=150&n2=122&n3=75
Найти высоту треугольника со сторонами 110, 107 и 15
Найти высоту треугольника со сторонами 150, 135 и 54
Найти высоту треугольника со сторонами 137, 88 и 67
Найти высоту треугольника со сторонами 119, 82 и 45
Найти высоту треугольника со сторонами 70, 66 и 29
Найти высоту треугольника со сторонами 101, 85 и 40
Найти высоту треугольника со сторонами 150, 135 и 54
Найти высоту треугольника со сторонами 137, 88 и 67
Найти высоту треугольника со сторонами 119, 82 и 45
Найти высоту треугольника со сторонами 70, 66 и 29
Найти высоту треугольника со сторонами 101, 85 и 40