Рассчитать высоту треугольника со сторонами 150, 123 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 123 + 33}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-150)(153-123)(153-33)}}{123}\normalsize = 20.9017417}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-150)(153-123)(153-33)}}{150}\normalsize = 17.1394282}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-150)(153-123)(153-33)}}{33}\normalsize = 77.9064919}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 123 и 33 равна 20.9017417
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 123 и 33 равна 17.1394282
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 123 и 33 равна 77.9064919
Ссылка на результат
?n1=150&n2=123&n3=33
Найти высоту треугольника со сторонами 132, 110 и 61
Найти высоту треугольника со сторонами 145, 104 и 81
Найти высоту треугольника со сторонами 73, 40 и 38
Найти высоту треугольника со сторонами 138, 129 и 27
Найти высоту треугольника со сторонами 123, 104 и 93
Найти высоту треугольника со сторонами 105, 95 и 94
Найти высоту треугольника со сторонами 145, 104 и 81
Найти высоту треугольника со сторонами 73, 40 и 38
Найти высоту треугольника со сторонами 138, 129 и 27
Найти высоту треугольника со сторонами 123, 104 и 93
Найти высоту треугольника со сторонами 105, 95 и 94