Рассчитать высоту треугольника со сторонами 150, 124 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 124 + 67}{2}} \normalsize = 170.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170.5(170.5-150)(170.5-124)(170.5-67)}}{124}\normalsize = 66.1521683}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170.5(170.5-150)(170.5-124)(170.5-67)}}{150}\normalsize = 54.6857925}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170.5(170.5-150)(170.5-124)(170.5-67)}}{67}\normalsize = 122.430879}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 124 и 67 равна 66.1521683
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 124 и 67 равна 54.6857925
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 124 и 67 равна 122.430879
Ссылка на результат
?n1=150&n2=124&n3=67
Найти высоту треугольника со сторонами 112, 102 и 62
Найти высоту треугольника со сторонами 76, 45 и 44
Найти высоту треугольника со сторонами 133, 98 и 82
Найти высоту треугольника со сторонами 83, 56 и 28
Найти высоту треугольника со сторонами 70, 58 и 49
Найти высоту треугольника со сторонами 115, 112 и 39
Найти высоту треугольника со сторонами 76, 45 и 44
Найти высоту треугольника со сторонами 133, 98 и 82
Найти высоту треугольника со сторонами 83, 56 и 28
Найти высоту треугольника со сторонами 70, 58 и 49
Найти высоту треугольника со сторонами 115, 112 и 39