Рассчитать высоту треугольника со сторонами 150, 126 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 126 + 58}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-150)(167-126)(167-58)}}{126}\normalsize = 56.538896}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-150)(167-126)(167-58)}}{150}\normalsize = 47.4926727}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-150)(167-126)(167-58)}}{58}\normalsize = 122.825878}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 126 и 58 равна 56.538896
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 126 и 58 равна 47.4926727
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 126 и 58 равна 122.825878
Ссылка на результат
?n1=150&n2=126&n3=58
Найти высоту треугольника со сторонами 139, 135 и 23
Найти высоту треугольника со сторонами 141, 122 и 54
Найти высоту треугольника со сторонами 122, 120 и 85
Найти высоту треугольника со сторонами 147, 103 и 97
Найти высоту треугольника со сторонами 73, 43 и 35
Найти высоту треугольника со сторонами 140, 116 и 84
Найти высоту треугольника со сторонами 141, 122 и 54
Найти высоту треугольника со сторонами 122, 120 и 85
Найти высоту треугольника со сторонами 147, 103 и 97
Найти высоту треугольника со сторонами 73, 43 и 35
Найти высоту треугольника со сторонами 140, 116 и 84