Рассчитать высоту треугольника со сторонами 150, 127 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 127 + 51}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-150)(164-127)(164-51)}}{127}\normalsize = 48.7924134}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-150)(164-127)(164-51)}}{150}\normalsize = 41.31091}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-150)(164-127)(164-51)}}{51}\normalsize = 121.502677}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 127 и 51 равна 48.7924134
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 127 и 51 равна 41.31091
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 127 и 51 равна 121.502677
Ссылка на результат
?n1=150&n2=127&n3=51
Найти высоту треугольника со сторонами 88, 85 и 43
Найти высоту треугольника со сторонами 67, 42 и 38
Найти высоту треугольника со сторонами 125, 79 и 72
Найти высоту треугольника со сторонами 106, 88 и 86
Найти высоту треугольника со сторонами 89, 58 и 58
Найти высоту треугольника со сторонами 129, 112 и 50
Найти высоту треугольника со сторонами 67, 42 и 38
Найти высоту треугольника со сторонами 125, 79 и 72
Найти высоту треугольника со сторонами 106, 88 и 86
Найти высоту треугольника со сторонами 89, 58 и 58
Найти высоту треугольника со сторонами 129, 112 и 50