Рассчитать высоту треугольника со сторонами 150, 128 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 128 + 33}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-150)(155.5-128)(155.5-33)}}{128}\normalsize = 26.5216756}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-150)(155.5-128)(155.5-33)}}{150}\normalsize = 22.6318298}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-150)(155.5-128)(155.5-33)}}{33}\normalsize = 102.871954}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 128 и 33 равна 26.5216756
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 128 и 33 равна 22.6318298
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 128 и 33 равна 102.871954
Ссылка на результат
?n1=150&n2=128&n3=33
Найти высоту треугольника со сторонами 83, 78 и 63
Найти высоту треугольника со сторонами 117, 77 и 62
Найти высоту треугольника со сторонами 76, 76 и 62
Найти высоту треугольника со сторонами 96, 65 и 46
Найти высоту треугольника со сторонами 66, 54 и 36
Найти высоту треугольника со сторонами 98, 85 и 50
Найти высоту треугольника со сторонами 117, 77 и 62
Найти высоту треугольника со сторонами 76, 76 и 62
Найти высоту треугольника со сторонами 96, 65 и 46
Найти высоту треугольника со сторонами 66, 54 и 36
Найти высоту треугольника со сторонами 98, 85 и 50