Рассчитать высоту треугольника со сторонами 150, 129 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 129 + 74}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-150)(176.5-129)(176.5-74)}}{129}\normalsize = 73.9851084}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-150)(176.5-129)(176.5-74)}}{150}\normalsize = 63.6271933}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-150)(176.5-129)(176.5-74)}}{74}\normalsize = 128.97404}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 129 и 74 равна 73.9851084
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 129 и 74 равна 63.6271933
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 129 и 74 равна 128.97404
Ссылка на результат
?n1=150&n2=129&n3=74
Найти высоту треугольника со сторонами 128, 127 и 99
Найти высоту треугольника со сторонами 146, 91 и 89
Найти высоту треугольника со сторонами 125, 124 и 24
Найти высоту треугольника со сторонами 98, 94 и 68
Найти высоту треугольника со сторонами 89, 81 и 35
Найти высоту треугольника со сторонами 145, 106 и 81
Найти высоту треугольника со сторонами 146, 91 и 89
Найти высоту треугольника со сторонами 125, 124 и 24
Найти высоту треугольника со сторонами 98, 94 и 68
Найти высоту треугольника со сторонами 89, 81 и 35
Найти высоту треугольника со сторонами 145, 106 и 81