Рассчитать высоту треугольника со сторонами 150, 133 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 133 + 61}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-150)(172-133)(172-61)}}{133}\normalsize = 60.8622091}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-150)(172-133)(172-61)}}{150}\normalsize = 53.964492}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-150)(172-133)(172-61)}}{61}\normalsize = 132.699571}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 133 и 61 равна 60.8622091
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 133 и 61 равна 53.964492
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 133 и 61 равна 132.699571
Ссылка на результат
?n1=150&n2=133&n3=61
Найти высоту треугольника со сторонами 125, 117 и 81
Найти высоту треугольника со сторонами 78, 42 и 41
Найти высоту треугольника со сторонами 149, 148 и 137
Найти высоту треугольника со сторонами 125, 97 и 80
Найти высоту треугольника со сторонами 81, 68 и 46
Найти высоту треугольника со сторонами 142, 140 и 21
Найти высоту треугольника со сторонами 78, 42 и 41
Найти высоту треугольника со сторонами 149, 148 и 137
Найти высоту треугольника со сторонами 125, 97 и 80
Найти высоту треугольника со сторонами 81, 68 и 46
Найти высоту треугольника со сторонами 142, 140 и 21