Рассчитать высоту треугольника со сторонами 150, 134 и 118
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 134 + 118}{2}} \normalsize = 201}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{201(201-150)(201-134)(201-118)}}{134}\normalsize = 112.68984}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{201(201-150)(201-134)(201-118)}}{150}\normalsize = 100.66959}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{201(201-150)(201-134)(201-118)}}{118}\normalsize = 127.969818}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 134 и 118 равна 112.68984
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 134 и 118 равна 100.66959
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 134 и 118 равна 127.969818
Ссылка на результат
?n1=150&n2=134&n3=118
Найти высоту треугольника со сторонами 93, 84 и 75
Найти высоту треугольника со сторонами 146, 91 и 76
Найти высоту треугольника со сторонами 106, 85 и 75
Найти высоту треугольника со сторонами 112, 89 и 88
Найти высоту треугольника со сторонами 141, 132 и 89
Найти высоту треугольника со сторонами 100, 76 и 73
Найти высоту треугольника со сторонами 146, 91 и 76
Найти высоту треугольника со сторонами 106, 85 и 75
Найти высоту треугольника со сторонами 112, 89 и 88
Найти высоту треугольника со сторонами 141, 132 и 89
Найти высоту треугольника со сторонами 100, 76 и 73