Рассчитать высоту треугольника со сторонами 150, 135 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 135 + 112}{2}} \normalsize = 198.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{198.5(198.5-150)(198.5-135)(198.5-112)}}{135}\normalsize = 107.731391}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{198.5(198.5-150)(198.5-135)(198.5-112)}}{150}\normalsize = 96.9582521}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{198.5(198.5-150)(198.5-135)(198.5-112)}}{112}\normalsize = 129.854802}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 135 и 112 равна 107.731391
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 135 и 112 равна 96.9582521
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 135 и 112 равна 129.854802
Ссылка на результат
?n1=150&n2=135&n3=112
Найти высоту треугольника со сторонами 52, 45 и 11
Найти высоту треугольника со сторонами 140, 130 и 84
Найти высоту треугольника со сторонами 64, 58 и 52
Найти высоту треугольника со сторонами 84, 66 и 50
Найти высоту треугольника со сторонами 106, 86 и 57
Найти высоту треугольника со сторонами 33, 23 и 15
Найти высоту треугольника со сторонами 140, 130 и 84
Найти высоту треугольника со сторонами 64, 58 и 52
Найти высоту треугольника со сторонами 84, 66 и 50
Найти высоту треугольника со сторонами 106, 86 и 57
Найти высоту треугольника со сторонами 33, 23 и 15