Рассчитать высоту треугольника со сторонами 150, 136 и 115
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 136 + 115}{2}} \normalsize = 200.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{200.5(200.5-150)(200.5-136)(200.5-115)}}{136}\normalsize = 109.889673}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{200.5(200.5-150)(200.5-136)(200.5-115)}}{150}\normalsize = 99.6333032}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{200.5(200.5-150)(200.5-136)(200.5-115)}}{115}\normalsize = 129.956482}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 136 и 115 равна 109.889673
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 136 и 115 равна 99.6333032
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 136 и 115 равна 129.956482
Ссылка на результат
?n1=150&n2=136&n3=115
Найти высоту треугольника со сторонами 117, 81 и 44
Найти высоту треугольника со сторонами 29, 24 и 13
Найти высоту треугольника со сторонами 79, 49 и 46
Найти высоту треугольника со сторонами 150, 114 и 87
Найти высоту треугольника со сторонами 125, 110 и 106
Найти высоту треугольника со сторонами 41, 38 и 27
Найти высоту треугольника со сторонами 29, 24 и 13
Найти высоту треугольника со сторонами 79, 49 и 46
Найти высоту треугольника со сторонами 150, 114 и 87
Найти высоту треугольника со сторонами 125, 110 и 106
Найти высоту треугольника со сторонами 41, 38 и 27