Рассчитать высоту треугольника со сторонами 150, 136 и 135
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 136 + 135}{2}} \normalsize = 210.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{210.5(210.5-150)(210.5-136)(210.5-135)}}{136}\normalsize = 124.464769}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{210.5(210.5-150)(210.5-136)(210.5-135)}}{150}\normalsize = 112.848057}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{210.5(210.5-150)(210.5-136)(210.5-135)}}{135}\normalsize = 125.38673}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 136 и 135 равна 124.464769
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 136 и 135 равна 112.848057
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 136 и 135 равна 125.38673
Ссылка на результат
?n1=150&n2=136&n3=135
Найти высоту треугольника со сторонами 145, 119 и 52
Найти высоту треугольника со сторонами 66, 43 и 40
Найти высоту треугольника со сторонами 115, 110 и 110
Найти высоту треугольника со сторонами 114, 79 и 79
Найти высоту треугольника со сторонами 101, 86 и 67
Найти высоту треугольника со сторонами 63, 49 и 25
Найти высоту треугольника со сторонами 66, 43 и 40
Найти высоту треугольника со сторонами 115, 110 и 110
Найти высоту треугольника со сторонами 114, 79 и 79
Найти высоту треугольника со сторонами 101, 86 и 67
Найти высоту треугольника со сторонами 63, 49 и 25