Рассчитать высоту треугольника со сторонами 150, 137 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 137 + 62}{2}} \normalsize = 174.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174.5(174.5-150)(174.5-137)(174.5-62)}}{137}\normalsize = 61.9986284}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174.5(174.5-150)(174.5-137)(174.5-62)}}{150}\normalsize = 56.6254139}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174.5(174.5-150)(174.5-137)(174.5-62)}}{62}\normalsize = 136.996969}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 137 и 62 равна 61.9986284
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 137 и 62 равна 56.6254139
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 137 и 62 равна 136.996969
Ссылка на результат
?n1=150&n2=137&n3=62
Найти высоту треугольника со сторонами 112, 72 и 50
Найти высоту треугольника со сторонами 135, 128 и 111
Найти высоту треугольника со сторонами 131, 120 и 80
Найти высоту треугольника со сторонами 54, 36 и 33
Найти высоту треугольника со сторонами 130, 111 и 55
Найти высоту треугольника со сторонами 127, 115 и 78
Найти высоту треугольника со сторонами 135, 128 и 111
Найти высоту треугольника со сторонами 131, 120 и 80
Найти высоту треугольника со сторонами 54, 36 и 33
Найти высоту треугольника со сторонами 130, 111 и 55
Найти высоту треугольника со сторонами 127, 115 и 78