Рассчитать высоту треугольника со сторонами 150, 138 и 106
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 138 + 106}{2}} \normalsize = 197}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{197(197-150)(197-138)(197-106)}}{138}\normalsize = 102.183236}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{197(197-150)(197-138)(197-106)}}{150}\normalsize = 94.0085774}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{197(197-150)(197-138)(197-106)}}{106}\normalsize = 133.031006}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 138 и 106 равна 102.183236
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 138 и 106 равна 94.0085774
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 138 и 106 равна 133.031006
Ссылка на результат
?n1=150&n2=138&n3=106
Найти высоту треугольника со сторонами 107, 99 и 87
Найти высоту треугольника со сторонами 115, 93 и 60
Найти высоту треугольника со сторонами 126, 125 и 119
Найти высоту треугольника со сторонами 102, 94 и 36
Найти высоту треугольника со сторонами 135, 135 и 71
Найти высоту треугольника со сторонами 143, 95 и 91
Найти высоту треугольника со сторонами 115, 93 и 60
Найти высоту треугольника со сторонами 126, 125 и 119
Найти высоту треугольника со сторонами 102, 94 и 36
Найти высоту треугольника со сторонами 135, 135 и 71
Найти высоту треугольника со сторонами 143, 95 и 91