Рассчитать высоту треугольника со сторонами 150, 139 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 139 + 14}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-150)(151.5-139)(151.5-14)}}{139}\normalsize = 8.9923561}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-150)(151.5-139)(151.5-14)}}{150}\normalsize = 8.33291666}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-150)(151.5-139)(151.5-14)}}{14}\normalsize = 89.2812499}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 139 и 14 равна 8.9923561
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 139 и 14 равна 8.33291666
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 139 и 14 равна 89.2812499
Ссылка на результат
?n1=150&n2=139&n3=14
Найти высоту треугольника со сторонами 91, 91 и 82
Найти высоту треугольника со сторонами 58, 39 и 38
Найти высоту треугольника со сторонами 92, 90 и 85
Найти высоту треугольника со сторонами 113, 85 и 49
Найти высоту треугольника со сторонами 33, 19 и 19
Найти высоту треугольника со сторонами 109, 97 и 89
Найти высоту треугольника со сторонами 58, 39 и 38
Найти высоту треугольника со сторонами 92, 90 и 85
Найти высоту треугольника со сторонами 113, 85 и 49
Найти высоту треугольника со сторонами 33, 19 и 19
Найти высоту треугольника со сторонами 109, 97 и 89