Рассчитать высоту треугольника со сторонами 150, 139 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 139 + 18}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-150)(153.5-139)(153.5-18)}}{139}\normalsize = 14.7828121}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-150)(153.5-139)(153.5-18)}}{150}\normalsize = 13.6987392}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-150)(153.5-139)(153.5-18)}}{18}\normalsize = 114.15616}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 139 и 18 равна 14.7828121
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 139 и 18 равна 13.6987392
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 139 и 18 равна 114.15616
Ссылка на результат
?n1=150&n2=139&n3=18
Найти высоту треугольника со сторонами 134, 106 и 51
Найти высоту треугольника со сторонами 126, 115 и 78
Найти высоту треугольника со сторонами 98, 98 и 38
Найти высоту треугольника со сторонами 141, 134 и 129
Найти высоту треугольника со сторонами 130, 108 и 106
Найти высоту треугольника со сторонами 122, 90 и 37
Найти высоту треугольника со сторонами 126, 115 и 78
Найти высоту треугольника со сторонами 98, 98 и 38
Найти высоту треугольника со сторонами 141, 134 и 129
Найти высоту треугольника со сторонами 130, 108 и 106
Найти высоту треугольника со сторонами 122, 90 и 37