Рассчитать высоту треугольника со сторонами 150, 141 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 141 + 35}{2}} \normalsize = 163}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163(163-150)(163-141)(163-35)}}{141}\normalsize = 34.6491581}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163(163-150)(163-141)(163-35)}}{150}\normalsize = 32.5702086}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163(163-150)(163-141)(163-35)}}{35}\normalsize = 139.586608}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 141 и 35 равна 34.6491581
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 141 и 35 равна 32.5702086
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 141 и 35 равна 139.586608
Ссылка на результат
?n1=150&n2=141&n3=35
Найти высоту треугольника со сторонами 78, 75 и 17
Найти высоту треугольника со сторонами 148, 106 и 61
Найти высоту треугольника со сторонами 131, 125 и 87
Найти высоту треугольника со сторонами 117, 103 и 46
Найти высоту треугольника со сторонами 80, 62 и 32
Найти высоту треугольника со сторонами 147, 79 и 71
Найти высоту треугольника со сторонами 148, 106 и 61
Найти высоту треугольника со сторонами 131, 125 и 87
Найти высоту треугольника со сторонами 117, 103 и 46
Найти высоту треугольника со сторонами 80, 62 и 32
Найти высоту треугольника со сторонами 147, 79 и 71