Рассчитать высоту треугольника со сторонами 150, 142 и 110
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 142 + 110}{2}} \normalsize = 201}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{201(201-150)(201-142)(201-110)}}{142}\normalsize = 104.489216}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{201(201-150)(201-142)(201-110)}}{150}\normalsize = 98.9164577}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{201(201-150)(201-142)(201-110)}}{110}\normalsize = 134.886079}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 142 и 110 равна 104.489216
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 142 и 110 равна 98.9164577
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 142 и 110 равна 134.886079
Ссылка на результат
?n1=150&n2=142&n3=110
Найти высоту треугольника со сторонами 77, 66 и 47
Найти высоту треугольника со сторонами 130, 126 и 96
Найти высоту треугольника со сторонами 91, 83 и 47
Найти высоту треугольника со сторонами 148, 111 и 111
Найти высоту треугольника со сторонами 123, 123 и 105
Найти высоту треугольника со сторонами 136, 135 и 66
Найти высоту треугольника со сторонами 130, 126 и 96
Найти высоту треугольника со сторонами 91, 83 и 47
Найти высоту треугольника со сторонами 148, 111 и 111
Найти высоту треугольника со сторонами 123, 123 и 105
Найти высоту треугольника со сторонами 136, 135 и 66