Рассчитать высоту треугольника со сторонами 150, 143 и 143
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 143 + 143}{2}} \normalsize = 218}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{218(218-150)(218-143)(218-143)}}{143}\normalsize = 127.713829}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{218(218-150)(218-143)(218-143)}}{150}\normalsize = 121.75385}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{218(218-150)(218-143)(218-143)}}{143}\normalsize = 127.713829}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 143 и 143 равна 127.713829
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 143 и 143 равна 121.75385
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 143 и 143 равна 127.713829
Ссылка на результат
?n1=150&n2=143&n3=143
Найти высоту треугольника со сторонами 118, 110 и 75
Найти высоту треугольника со сторонами 105, 92 и 60
Найти высоту треугольника со сторонами 134, 123 и 32
Найти высоту треугольника со сторонами 61, 60 и 39
Найти высоту треугольника со сторонами 137, 136 и 131
Найти высоту треугольника со сторонами 29, 29 и 14
Найти высоту треугольника со сторонами 105, 92 и 60
Найти высоту треугольника со сторонами 134, 123 и 32
Найти высоту треугольника со сторонами 61, 60 и 39
Найти высоту треугольника со сторонами 137, 136 и 131
Найти высоту треугольника со сторонами 29, 29 и 14