Рассчитать высоту треугольника со сторонами 150, 144 и 140
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 144 + 140}{2}} \normalsize = 217}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{217(217-150)(217-144)(217-140)}}{144}\normalsize = 125.557183}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{217(217-150)(217-144)(217-140)}}{150}\normalsize = 120.534896}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{217(217-150)(217-144)(217-140)}}{140}\normalsize = 129.144531}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 144 и 140 равна 125.557183
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 144 и 140 равна 120.534896
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 144 и 140 равна 129.144531
Ссылка на результат
?n1=150&n2=144&n3=140
Найти высоту треугольника со сторонами 107, 86 и 57
Найти высоту треугольника со сторонами 73, 56 и 35
Найти высоту треугольника со сторонами 113, 99 и 66
Найти высоту треугольника со сторонами 141, 100 и 48
Найти высоту треугольника со сторонами 135, 123 и 39
Найти высоту треугольника со сторонами 139, 95 и 89
Найти высоту треугольника со сторонами 73, 56 и 35
Найти высоту треугольника со сторонами 113, 99 и 66
Найти высоту треугольника со сторонами 141, 100 и 48
Найти высоту треугольника со сторонами 135, 123 и 39
Найти высоту треугольника со сторонами 139, 95 и 89