Рассчитать высоту треугольника со сторонами 150, 144 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 144 + 62}{2}} \normalsize = 178}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178(178-150)(178-144)(178-62)}}{144}\normalsize = 61.5779141}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178(178-150)(178-144)(178-62)}}{150}\normalsize = 59.1147975}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178(178-150)(178-144)(178-62)}}{62}\normalsize = 143.019671}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 144 и 62 равна 61.5779141
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 144 и 62 равна 59.1147975
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 144 и 62 равна 143.019671
Ссылка на результат
?n1=150&n2=144&n3=62
Найти высоту треугольника со сторонами 149, 107 и 99
Найти высоту треугольника со сторонами 147, 145 и 38
Найти высоту треугольника со сторонами 141, 87 и 70
Найти высоту треугольника со сторонами 124, 111 и 109
Найти высоту треугольника со сторонами 147, 130 и 124
Найти высоту треугольника со сторонами 148, 113 и 38
Найти высоту треугольника со сторонами 147, 145 и 38
Найти высоту треугольника со сторонами 141, 87 и 70
Найти высоту треугольника со сторонами 124, 111 и 109
Найти высоту треугольника со сторонами 147, 130 и 124
Найти высоту треугольника со сторонами 148, 113 и 38