Рассчитать высоту треугольника со сторонами 150, 144 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 144 + 89}{2}} \normalsize = 191.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{191.5(191.5-150)(191.5-144)(191.5-89)}}{144}\normalsize = 86.3942181}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{191.5(191.5-150)(191.5-144)(191.5-89)}}{150}\normalsize = 82.9384494}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{191.5(191.5-150)(191.5-144)(191.5-89)}}{89}\normalsize = 139.783903}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 144 и 89 равна 86.3942181
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 144 и 89 равна 82.9384494
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 144 и 89 равна 139.783903
Ссылка на результат
?n1=150&n2=144&n3=89
Найти высоту треугольника со сторонами 101, 66 и 39
Найти высоту треугольника со сторонами 118, 99 и 86
Найти высоту треугольника со сторонами 89, 62 и 38
Найти высоту треугольника со сторонами 143, 113 и 105
Найти высоту треугольника со сторонами 133, 108 и 35
Найти высоту треугольника со сторонами 130, 101 и 100
Найти высоту треугольника со сторонами 118, 99 и 86
Найти высоту треугольника со сторонами 89, 62 и 38
Найти высоту треугольника со сторонами 143, 113 и 105
Найти высоту треугольника со сторонами 133, 108 и 35
Найти высоту треугольника со сторонами 130, 101 и 100