Рассчитать высоту треугольника со сторонами 150, 145 и 113
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 145 + 113}{2}} \normalsize = 204}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{204(204-150)(204-145)(204-113)}}{145}\normalsize = 106.076861}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{204(204-150)(204-145)(204-113)}}{150}\normalsize = 102.540965}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{204(204-150)(204-145)(204-113)}}{113}\normalsize = 136.116326}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 145 и 113 равна 106.076861
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 145 и 113 равна 102.540965
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 145 и 113 равна 136.116326
Ссылка на результат
?n1=150&n2=145&n3=113
Найти высоту треугольника со сторонами 101, 88 и 64
Найти высоту треугольника со сторонами 144, 104 и 54
Найти высоту треугольника со сторонами 142, 142 и 42
Найти высоту треугольника со сторонами 130, 121 и 80
Найти высоту треугольника со сторонами 76, 54 и 23
Найти высоту треугольника со сторонами 129, 106 и 62
Найти высоту треугольника со сторонами 144, 104 и 54
Найти высоту треугольника со сторонами 142, 142 и 42
Найти высоту треугольника со сторонами 130, 121 и 80
Найти высоту треугольника со сторонами 76, 54 и 23
Найти высоту треугольника со сторонами 129, 106 и 62