Рассчитать высоту треугольника со сторонами 150, 145 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 145 + 56}{2}} \normalsize = 175.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175.5(175.5-150)(175.5-145)(175.5-56)}}{145}\normalsize = 55.706326}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175.5(175.5-150)(175.5-145)(175.5-56)}}{150}\normalsize = 53.8494485}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175.5(175.5-150)(175.5-145)(175.5-56)}}{56}\normalsize = 144.239594}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 145 и 56 равна 55.706326
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 145 и 56 равна 53.8494485
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 145 и 56 равна 144.239594
Ссылка на результат
?n1=150&n2=145&n3=56
Найти высоту треугольника со сторонами 110, 80 и 42
Найти высоту треугольника со сторонами 146, 139 и 67
Найти высоту треугольника со сторонами 146, 126 и 49
Найти высоту треугольника со сторонами 89, 70 и 30
Найти высоту треугольника со сторонами 107, 63 и 51
Найти высоту треугольника со сторонами 120, 69 и 57
Найти высоту треугольника со сторонами 146, 139 и 67
Найти высоту треугольника со сторонами 146, 126 и 49
Найти высоту треугольника со сторонами 89, 70 и 30
Найти высоту треугольника со сторонами 107, 63 и 51
Найти высоту треугольника со сторонами 120, 69 и 57