Рассчитать высоту треугольника со сторонами 150, 146 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 146 + 9}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-150)(152.5-146)(152.5-9)}}{146}\normalsize = 8.16892098}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-150)(152.5-146)(152.5-9)}}{150}\normalsize = 7.95108308}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-150)(152.5-146)(152.5-9)}}{9}\normalsize = 132.518051}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 146 и 9 равна 8.16892098
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 146 и 9 равна 7.95108308
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 146 и 9 равна 132.518051
Ссылка на результат
?n1=150&n2=146&n3=9
Найти высоту треугольника со сторонами 100, 65 и 60
Найти высоту треугольника со сторонами 111, 81 и 56
Найти высоту треугольника со сторонами 144, 124 и 22
Найти высоту треугольника со сторонами 131, 78 и 54
Найти высоту треугольника со сторонами 130, 85 и 64
Найти высоту треугольника со сторонами 89, 75 и 55
Найти высоту треугольника со сторонами 111, 81 и 56
Найти высоту треугольника со сторонами 144, 124 и 22
Найти высоту треугольника со сторонами 131, 78 и 54
Найти высоту треугольника со сторонами 130, 85 и 64
Найти высоту треугольника со сторонами 89, 75 и 55