Рассчитать высоту треугольника со сторонами 150, 148 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 148 + 74}{2}} \normalsize = 186}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{186(186-150)(186-148)(186-74)}}{148}\normalsize = 72.140112}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{186(186-150)(186-148)(186-74)}}{150}\normalsize = 71.1782439}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{186(186-150)(186-148)(186-74)}}{74}\normalsize = 144.280224}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 148 и 74 равна 72.140112
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 148 и 74 равна 71.1782439
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 148 и 74 равна 144.280224
Ссылка на результат
?n1=150&n2=148&n3=74
Найти высоту треугольника со сторонами 146, 96 и 67
Найти высоту треугольника со сторонами 107, 107 и 20
Найти высоту треугольника со сторонами 67, 56 и 56
Найти высоту треугольника со сторонами 93, 68 и 60
Найти высоту треугольника со сторонами 124, 97 и 43
Найти высоту треугольника со сторонами 123, 109 и 85
Найти высоту треугольника со сторонами 107, 107 и 20
Найти высоту треугольника со сторонами 67, 56 и 56
Найти высоту треугольника со сторонами 93, 68 и 60
Найти высоту треугольника со сторонами 124, 97 и 43
Найти высоту треугольника со сторонами 123, 109 и 85